

Design in State Space (time domain)

Job van Amerongen

Control Engineering, Department of Electrical Engineering University of Twente, Netherlands www.ce.utwente.nl/amn J.vanAmerongen@utwente.nl

Contents

- State space description
- state feedback
- pole placement
- optimisation

First-order system

Second order system

Set of first-order systems

Control Engineering University of Twente

For SISO systems: u = input signal (scalar) For SISO systems: y = output signal (scalar) $b = system matrix (n \times n)$ y = output signal (scalar) $b = input matrix (n \times 1)$ $x = state vector (n \times 1)$ $c = output matrix (1 \times n)$

Set of first-order systems

Control Engineering University of Twente

For MIMO systems: $u = input vector (m \times 1)$ $y = output signal (p \times 1)$ $x = state vector (n \times 1)$ For MIMO systems: A = system matrix ($n \times n$) B = input matrix ($n \times m$) C = output matrix ($p \times n$)

• The state $(x(t_0))$ of a system at $t = t_0$ is the minimal amount of information that is necessary to describe the behaviour of the system for $t > t_0$, if also the input(s) and the state equations are known

- State variables are not unique
 - any linear combination of state variables is a state variable again
- E.g. the initial conditions of the integrators in the system

Series form

eigenvalues at the diagonal

Series form (alternative)

Parallel form

eigenvalues at the diagonal

Phase-variable form

Phase-variable form (zeros)

Phase-variable form (alternative)

Dual phase-variable form

Phase variable form

Phase-variable form (alternative)

Dual phase-variable form

State-variable filter

Control Engineering University of Twente

Demo SVF bandwidth Demo_SVF

20-sim

Demo SVF noise

Demo_SVF_noise

State space design

State Feedback

$$\dot{\boldsymbol{x}} = (\boldsymbol{A} - b\boldsymbol{K})\boldsymbol{x} + K_1 br$$

$$A' = (A - bK)$$

When K is properly chosen,
A' can get any desired eigen values

Poles can be placed by means of state feedback

(stable) zeros can only be relocated by means of prefilter

 $\mathcal{A}' = \begin{pmatrix} 0 & 1 \\ -\mathcal{K}'\mathcal{K}_1 & -a - \mathcal{K}'\mathcal{K}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\omega_n^2 & -2z\omega_n \end{pmatrix}$ $K'K_1 = \omega_n^2$ $K'K_2 = 2z\omega_n - a$ $a + K'K_2 = 2z\omega_n$ $=2z\sqrt{K'K_1}-a$ $Z = COS(\varphi)$ if K' = 1, a = 1 $\omega_n = 2$, z = 0.7 $K_1 = 2^2 = 4$ Design choice process $K_2 = 2z^2 - 1 = 1.8$

Simulation

- State feedback assumes that all states can be used for feedback...
- This implies that

$$\boldsymbol{y} = \begin{pmatrix} \boldsymbol{y}_1 \\ \boldsymbol{y}_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \boldsymbol{x}$$

- If all states are not available they can be estimated
 - e.g. with a state variable filter (SVF)

Demonstration 20-sim

Responses

- If the bandwidth of the SVF is chosen 10 times larger than the bandwidth of the controlled process, the phase lag of the SVF is negligible.
- Can only be done when there is (almost) no noise on measured y
- Course 'Digital Control' will give more advanced solutions

System performance

- Performance of a system can be expressed in terms of
 - bandwidth
 - pole locations (in fact the same)
 - optimal control problem

- Error should be small
- reference changes should be perfectly tracked

But

- not at any price:
- control effort should be kept small
 - energy
 - price of equipment

Regulator system

Control Engineering University of Twente

Consider errors at t = 0 ($x(0) \neq 0$)

Optimisation

We consider the system

$$\dot{x} = Ax + bu$$
, with state feedback
 $u = -Kx$ System description
Find the feedback gain, K, such that
Adjustable parameter(s)
 $J = \int_{0}^{\infty} (x^{T}Qx + ru^{2}) dt$ is minimal
Criterion

Quadratic criterion

If we consider a second-order system and

$$Q = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

then $J = \int_{0}^{\infty} (x^{2} + ru^{2}) dt$

Meaningful criteria

Not properly defined optimisation problem

Control Engineering University of Twente

Find the feedback gains, K_1 , K_2 , such that $\int x_1^2 dt$ is minimal K_1 , K_2 go to ∞

Properly defined optimisation problem

Control Engineering University of Twente

Given K_1 , find the feedback gain, K_2 , such that $\int x_1^2 dt$ is minimal

Optimisation

Based on Ricatti equations

- LQR in 20-sim or Matlab
- only for quadratic criteria
- Hill climbing
 - systematic search method
 - e.g. 20-sim
 - any well chosen criterion
- Hill climbing
 - find the top of an unknown hill in the fog

20-sim

Criteria

ISE	∫e ² dt	more weight of large errors
IAE	∫ e dt	
ITAE	∫ e †d†	more weight on steady-state errors

Responses

 When we weight both x and u, all feedback gains may be optimised simultaneously

$$\mathcal{J} = \int \left(e^2 + \lambda u^2 \right) dt$$

more weight on λ , leads to smaller u, and slower response

Weighting x and u

Responses

Type 0 system

Responses

Responses

'PID'-control

Responses

Responses (2)

Reference $\neq 0$

Reference $\neq 0$

Example robot link

Control Engineering University of Twente

Exercise: do this optimisation yourself (process parameters as in sheet 3 of s-plane design) 20-sim

Responses

Conclusions

- State feedback
 - allows poles to placed at any desired location
 - specially suited for computer-supported design
 - requires that all states be available
 - this is not always the case
 - may require state estimation