
Control Laboratory

Lecture 8     State-space design (1) Control Engineering 2006/2007  © Job van Amerongen

Design in State Space
(time domain) 

Design in State Space
(time domain) 

Control Engineering, Department of Electrical EngineeringControl Engineering, Department of Electrical Engineering
University of Twente, NetherlandsUniversity of Twente, Netherlands

www.ce.utwente.nl/amnwww.ce.utwente.nl/amn
J.vanAmerongen@utwente.nlJ.vanAmerongen@utwente.nl

Job van Amerongen



Control Engineering
University of Twente

Lecture 8     State-space design (2) Control Engineering 2006/2007  © Job van Amerongen

ContentsContents

•• State space descriptionState space description
•• state feedbackstate feedback
•• pole placementpole placement
•• optimisationoptimisation



Control Engineering
University of Twente

Lecture 8     State-space design (3) Control Engineering 2006/2007  © Job van Amerongen

First-order systemFirst-order system
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Second order systemSecond order system
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Set of first-order systemsSet of first-order systems
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For For SISOSISO systems:systems:
uu = input signal (scalar)= input signal (scalar)
yy = output signal (scalar)= output signal (scalar)
xx = state vector (= state vector (nn ×× 1)1)

For For SISOSISO systems:systems:
AA = system matrix (= system matrix (nn ×× nn))
bb = input matrix (= input matrix (nn ×× 11))
cc = output matrix (= output matrix (1 1 ×× nn))
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Set of first-order systemsSet of first-order systems
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For For MIMOMIMO systems:systems:
uu = input vector (= input vector (mm ×× 11))
yy = output signal (= output signal (pp ×× 1)1)
xx = state vector (= state vector (nn ×× 1)1)

For For MIMOMIMO systems:systems:
AA = system matrix (= system matrix (nn ×× nn))
BB = input matrix (= input matrix (nn ×× mm))
CC = output matrix (= output matrix (pp ×× nn))
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State (1)State (1)

•• The state (The state (xx ((tt00)) of a system at )) of a system at tt = = tt00
is the minimal amount of information is the minimal amount of information 
that is necessary to describe the that is necessary to describe the 
behaviourbehaviour of the system for of the system for tt > > tt00 , if , if 
also the input(s) and the state also the input(s) and the state 
equations are knownequations are known
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State (2)State (2)

•• State variables are not uniqueState variables are not unique
–– any linear combination of state variables any linear combination of state variables 

is a state variable againis a state variable again
•• E.g. the initial conditions of the E.g. the initial conditions of the 

integrators in the systemintegrators in the system
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eigenvalues at the diagonaleigenvalues at the diagonal

Series formSeries form
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Series form (alternative)Series form (alternative)
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eigenvalues at the diagonaleigenvalues at the diagonal

Parallel formParallel form
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Phase-variable formPhase-variable form
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Phase-variable form (zeros)Phase-variable form (zeros)
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Phase-variable form (alternative)Phase-variable form (alternative)
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Dual phase-variable formDual phase-variable form
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Phase-variable form (alternative)Phase-variable form (alternative)
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Dual phase-variable formDual phase-variable form
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State-variable filterState-variable filter
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SVF demosSVF demos

Demo SVFDemo SVF
bandwidthbandwidth

Demo_SVFDemo_SVF

Demo SVFDemo SVF
noisenoise

Demo_SVF_noiseDemo_SVF_noise

2020--simsim
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State space designState space design
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Pole placementPole placement

( )′ = −A bA K
When When KK is properly chosen,is properly chosen,
AA’’ can get any desired can get any desired eigeneigen valuesvalues

( )= − 1b K brx A K x +

Poles can be placed by means of Poles can be placed by means of 
state feedbackstate feedback

(stable) zeros can only be relocated(stable) zeros can only be relocated
by means of by means of prefilterprefilter
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ExampleExample
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ExampleExample
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SimulationSimulation
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All states must be availableAll states must be available

•• State feedback assumes that all State feedback assumes that all 
states can be used for feedbackstates can be used for feedback……

•• This implies thatThis implies that
⎛ ⎞⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

1

2

1 0
0 1

y
yy x

•• If all states are not available they If all states are not available they 
can be estimatedcan be estimated
–– e.g. with a state variable filter (SVF)e.g. with a state variable filter (SVF)
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Demonstration 20-simDemonstration 20-sim
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ResponsesResponses
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feedback of real statesfeedback of real states
ωωnn = 2 = 2 

feedback of SVF states feedback of SVF states ωωn,n,SVFSVF = 4= 4

feedback of SVF states feedback of SVF states ωωnn, , SVFSVF = 20= 20
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Rule of thumbRule of thumb

•• If the bandwidth of the SVF is If the bandwidth of the SVF is 
chosen 10 times larger than the chosen 10 times larger than the 
bandwidth of the controlled process, bandwidth of the controlled process, 
the phase lag of the SVF is negligible.the phase lag of the SVF is negligible.

•• Can only be done when there is Can only be done when there is 
(almost) no noise on measured (almost) no noise on measured yy

•• Course Course ‘‘Digital ControlDigital Control’’ will give more will give more 
advanced solutionsadvanced solutions
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System performanceSystem performance

•• Performance of a system can be Performance of a system can be 
expressed in terms ofexpressed in terms of
–– bandwidthbandwidth
–– pole locations (in fact the same)pole locations (in fact the same)
–– optimal control problemoptimal control problem
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Trade offTrade off

•• Error should be smallError should be small
•• reference changes should be reference changes should be 

perfectly trackedperfectly tracked
ButBut
•• not at any price:not at any price:
•• control effort should be kept smallcontrol effort should be kept small

–– energyenergy
–– price of equipmentprice of equipment
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Regulator systemRegulator system
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CriterionCriterion

Adjustable parameter(s)Adjustable parameter(s)

System descriptionSystem description

OptimisationOptimisation

We consider the systemWe consider the system
= +

= −

, with state feedbackbu
u
x Ax

Kx

Find the feedback gain, Find the feedback gain, KK, such that, such that

( )
∞

= +∫ 2

0
 is minimalTJ ru dtx Qx

Quadratic criterionQuadratic criterion
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Second order systemSecond order system
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Meaningful criteriaMeaningful criteria
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Not properly defined
optimisation problem
Not properly defined
optimisation problem
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Find the feedback gains, Find the feedback gains, KK11, K, K22, such that, such that
2
1   is minimalx dt∫ KK11, K, K2 2 go to go to ∞∞
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Properly defined
optimisation problem
Properly defined
optimisation problem
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OptimisationOptimisation

•• Based on Based on RicattiRicatti equations equations 
–– LQR  in 20LQR  in 20--sim or sim or MatlabMatlab
–– only for quadratic criteriaonly for quadratic criteria

•• Hill climbingHill climbing
–– systematic search methodsystematic search method
–– e.g. 20e.g. 20--simsim
–– any well chosen criterionany well chosen criterion

•• Hill climbingHill climbing
–– find the top of an unknown hill in the fogfind the top of an unknown hill in the fog
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20-sim20-sim

∫k
τs    + 1

K

K

e2∫

Demo: state feedback optimizationDemo: state feedback optimizationDemo: state feedback optimization K1 fixedDemo: state feedback optimization K1 fixed

DemoDemo’’ss
2020--simsim::

KK1, 1, KK22

KK1 fixed1 fixed
optimiseoptimise KK22
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CriteriaCriteria

ISEISE ∫ 2e dt

IAEIAE ∫ e dt

ITAEITAE ∫ e t dt

more weightmore weight
of large errorsof large errors

more weightmore weight
on steadyon steady--statestate
errorserrors
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ResponsesResponses
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Weighting x and uWeighting x and u

•• When we weight both When we weight both xx and and uu, all , all 
feedback gains may be feedback gains may be optimisedoptimised
simultaneouslysimultaneously

( )λ= +∫ 2 2J e u dt

more weight on more weight on λλ, leads to , leads to 
smaller smaller uu, and slower response, and slower response
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Weighting x and uWeighting x and u

∫k
τs    + 1
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e  +    u2 2λ∫

Demo: Demo: State_feedback_optimisation_e_and_uState_feedback_optimisation_e_and_u
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ResponsesResponses
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controllercontroller

processprocess

Type 0 systemType 0 system
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ResponsesResponses
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‘PID’-control‘PID’-control

K

k
τs    + 1

e  +    u2 2λ∫

K

K

k
τs    + 1

∫

integral controlintegral control

2020--simsim
demodemo



Control Engineering
University of Twente

Lecture 8     State-space design (50) Control Engineering 2006/2007  © Job van Amerongen

ResponsesResponses
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Reference ≠ 0Reference ≠ 0
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Reference ≠ 0Reference ≠ 0

KK11 ==K K [1][1]
KK

processprocessrr ≠≠ 00 xx(0) (0) = = 00
KK11

++
__

εε

KK’’

processprocessrr ≠≠ 00 xx(0) (0) = = 00++
__

εε
KK11

xx11
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Example robot linkExample robot link

K

k
τs    + 1

K

K k
τs    + 1

e  +    u2 2λ∫

∫

Exercise: do this Exercise: do this optimisationoptimisation yourselfyourself
(process parameters as in (process parameters as in 
sheet 3 of ssheet 3 of s--plane design)plane design)

Measure, Measure, ϕϕ, , ωω, , II

ϕϕωωΙΙ

2020--simsim
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ResponsesResponses

0 5 10 15 20
time

S
ig

na
lM

on
ito

r2

0

0.5

1

1.5

proportional (proportional (KK11 = 2)= 2)
λλ = 0.1= 0.1

λλ = 0.01= 0.01 KK TT = (17, 8.7, 2)= (17, 8.7, 2)
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ConclusionsConclusions

•• State feedbackState feedback
–– allows allows polespoles to placed at any desired to placed at any desired 

locationlocation
–– specially suited for computerspecially suited for computer--supported supported 

designdesign
–– requires that all states be availablerequires that all states be available
–– this is not always the casethis is not always the case
–– may require state estimationmay require state estimation
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